3.511 \(\int \tan ^4(c+d x) (a+b \tan (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=209 \[ \frac {2 \left (8 a^2-63 b^2\right ) (a+b \tan (c+d x))^{5/2}}{315 b^3 d}-\frac {8 a \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{63 b^2 d}+\frac {2 \tan ^2(c+d x) (a+b \tan (c+d x))^{5/2}}{9 b d}+\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}-\frac {i (a-i b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {i (a+i b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d} \]

[Out]

-I*(a-I*b)^(3/2)*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/d+I*(a+I*b)^(3/2)*arctanh((a+b*tan(d*x+c))^(1/2
)/(a+I*b)^(1/2))/d+2*b*(a+b*tan(d*x+c))^(1/2)/d+2/315*(8*a^2-63*b^2)*(a+b*tan(d*x+c))^(5/2)/b^3/d-8/63*a*tan(d
*x+c)*(a+b*tan(d*x+c))^(5/2)/b^2/d+2/9*tan(d*x+c)^2*(a+b*tan(d*x+c))^(5/2)/b/d

________________________________________________________________________________________

Rubi [A]  time = 0.45, antiderivative size = 209, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3566, 3647, 3631, 3482, 3539, 3537, 63, 208} \[ \frac {2 \left (8 a^2-63 b^2\right ) (a+b \tan (c+d x))^{5/2}}{315 b^3 d}-\frac {8 a \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{63 b^2 d}+\frac {2 \tan ^2(c+d x) (a+b \tan (c+d x))^{5/2}}{9 b d}+\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}-\frac {i (a-i b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {i (a+i b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^4*(a + b*Tan[c + d*x])^(3/2),x]

[Out]

((-I)*(a - I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d + (I*(a + I*b)^(3/2)*ArcTanh[Sqrt[a +
 b*Tan[c + d*x]]/Sqrt[a + I*b]])/d + (2*b*Sqrt[a + b*Tan[c + d*x]])/d + (2*(8*a^2 - 63*b^2)*(a + b*Tan[c + d*x
])^(5/2))/(315*b^3*d) - (8*a*Tan[c + d*x]*(a + b*Tan[c + d*x])^(5/2))/(63*b^2*d) + (2*Tan[c + d*x]^2*(a + b*Ta
n[c + d*x])^(5/2))/(9*b*d)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3482

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(a + b*Tan[c + d*x])^(n - 1))/(d*(n - 1)
), x] + Int[(a^2 - b^2 + 2*a*b*Tan[c + d*x])*(a + b*Tan[c + d*x])^(n - 2), x] /; FreeQ[{a, b, c, d}, x] && NeQ
[a^2 + b^2, 0] && GtQ[n, 1]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3566

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b^2*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(m + n - 1)), x] + Dist[1/(d*(m + n -
1)), Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^n*Simp[a^3*d*(m + n - 1) - b^2*(b*c*(m - 2) + a*d*(
1 + n)) + b*d*(m + n - 1)*(3*a^2 - b^2)*Tan[e + f*x] - b^2*(b*c*(m - 2) - a*d*(3*m + 2*n - 4))*Tan[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& IntegerQ[2*m] && GtQ[m, 2] && (GeQ[n, -1] || IntegerQ[m]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] || (EqQ[c, 0]
&& NeQ[a, 0])))

Rule 3631

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp
[(C*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Dist[A - C, Int[(a + b*Tan[e + f*x])^m, x], x] /; FreeQ[
{a, b, e, f, A, C, m}, x] && NeQ[A*b^2 + a^2*C, 0] &&  !LeQ[m, -1]

Rule 3647

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*
tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(C*(a + b*Tan[e + f*x])^m*(c + d
*Tan[e + f*x])^(n + 1))/(d*f*(m + n + 1)), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c +
d*Tan[e + f*x])^n*Simp[a*A*d*(m + n + 1) - C*(b*c*m + a*d*(n + 1)) + d*(A*b + a*B - b*C)*(m + n + 1)*Tan[e + f
*x] - (C*m*(b*c - a*d) - b*B*d*(m + n + 1))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !Intege
rQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rubi steps

\begin {align*} \int \tan ^4(c+d x) (a+b \tan (c+d x))^{3/2} \, dx &=\frac {2 \tan ^2(c+d x) (a+b \tan (c+d x))^{5/2}}{9 b d}+\frac {2 \int \tan (c+d x) (a+b \tan (c+d x))^{3/2} \left (-2 a-\frac {9}{2} b \tan (c+d x)-2 a \tan ^2(c+d x)\right ) \, dx}{9 b}\\ &=-\frac {8 a \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{63 b^2 d}+\frac {2 \tan ^2(c+d x) (a+b \tan (c+d x))^{5/2}}{9 b d}+\frac {4 \int (a+b \tan (c+d x))^{3/2} \left (2 a^2+\frac {1}{4} \left (8 a^2-63 b^2\right ) \tan ^2(c+d x)\right ) \, dx}{63 b^2}\\ &=\frac {2 \left (8 a^2-63 b^2\right ) (a+b \tan (c+d x))^{5/2}}{315 b^3 d}-\frac {8 a \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{63 b^2 d}+\frac {2 \tan ^2(c+d x) (a+b \tan (c+d x))^{5/2}}{9 b d}+\int (a+b \tan (c+d x))^{3/2} \, dx\\ &=\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}+\frac {2 \left (8 a^2-63 b^2\right ) (a+b \tan (c+d x))^{5/2}}{315 b^3 d}-\frac {8 a \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{63 b^2 d}+\frac {2 \tan ^2(c+d x) (a+b \tan (c+d x))^{5/2}}{9 b d}+\int \frac {a^2-b^2+2 a b \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx\\ &=\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}+\frac {2 \left (8 a^2-63 b^2\right ) (a+b \tan (c+d x))^{5/2}}{315 b^3 d}-\frac {8 a \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{63 b^2 d}+\frac {2 \tan ^2(c+d x) (a+b \tan (c+d x))^{5/2}}{9 b d}+\frac {1}{2} (a-i b)^2 \int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx+\frac {1}{2} (a+i b)^2 \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx\\ &=\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}+\frac {2 \left (8 a^2-63 b^2\right ) (a+b \tan (c+d x))^{5/2}}{315 b^3 d}-\frac {8 a \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{63 b^2 d}+\frac {2 \tan ^2(c+d x) (a+b \tan (c+d x))^{5/2}}{9 b d}+\frac {\left (i (a-i b)^2\right ) \operatorname {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}-\frac {\left (i (a+i b)^2\right ) \operatorname {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d}\\ &=\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}+\frac {2 \left (8 a^2-63 b^2\right ) (a+b \tan (c+d x))^{5/2}}{315 b^3 d}-\frac {8 a \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{63 b^2 d}+\frac {2 \tan ^2(c+d x) (a+b \tan (c+d x))^{5/2}}{9 b d}-\frac {(a-i b)^2 \operatorname {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}-\frac {(a+i b)^2 \operatorname {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}\\ &=-\frac {i (a-i b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {i (a+i b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d}+\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}+\frac {2 \left (8 a^2-63 b^2\right ) (a+b \tan (c+d x))^{5/2}}{315 b^3 d}-\frac {8 a \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{63 b^2 d}+\frac {2 \tan ^2(c+d x) (a+b \tan (c+d x))^{5/2}}{9 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.59, size = 268, normalized size = 1.28 \[ \frac {\frac {2 \left (8 a^2-63 b^2\right ) (a+b \tan (c+d x))^{5/2}}{b^2}-\frac {315 \left (a^2 \sqrt {-b^2}+2 a b^2+\left (-b^2\right )^{3/2}\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-\sqrt {-b^2}}}\right )}{\sqrt {a-\sqrt {-b^2}}}+\frac {315 \left (a^2 \sqrt {-b^2}-2 a b^2+\left (-b^2\right )^{3/2}\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+\sqrt {-b^2}}}\right )}{\sqrt {a+\sqrt {-b^2}}}+630 b^2 \sqrt {a+b \tan (c+d x)}+70 \tan ^2(c+d x) (a+b \tan (c+d x))^{5/2}-\frac {40 a \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{b}}{315 b d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^4*(a + b*Tan[c + d*x])^(3/2),x]

[Out]

((-315*(2*a*b^2 + a^2*Sqrt[-b^2] + (-b^2)^(3/2))*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - Sqrt[-b^2]]])/Sqrt[
a - Sqrt[-b^2]] + (315*(-2*a*b^2 + a^2*Sqrt[-b^2] + (-b^2)^(3/2))*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + Sq
rt[-b^2]]])/Sqrt[a + Sqrt[-b^2]] + 630*b^2*Sqrt[a + b*Tan[c + d*x]] + (2*(8*a^2 - 63*b^2)*(a + b*Tan[c + d*x])
^(5/2))/b^2 - (40*a*Tan[c + d*x]*(a + b*Tan[c + d*x])^(5/2))/b + 70*Tan[c + d*x]^2*(a + b*Tan[c + d*x])^(5/2))
/(315*b*d)

________________________________________________________________________________________

fricas [B]  time = 1.19, size = 4429, normalized size = 21.19 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4*(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/1260*(1260*sqrt(2)*b^3*d^5*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b
^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(3/4)*sqr
t((9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4)*arctan(((3*a^10 + 11*a^8*b^2 + 14*a^6*b^4 + 6*a^4*b^6 - a^2*b^8 - b^10)*d
^4*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4) + (3*a^13 + 14*a^11*b
^2 + 25*a^9*b^4 + 20*a^7*b^6 + 5*a^5*b^8 - 2*a^3*b^10 - a*b^12)*d^2*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4) +
sqrt(2)*((3*a^4*b + 2*a^2*b^3 - b^5)*d^7*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*sqrt((9*a^4*b^2 - 6*a^2
*b^4 + b^6)/d^4) + 2*(3*a^7*b + 5*a^5*b^3 + a^3*b^5 - a*b^7)*d^5*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))*sqrt
((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^
4*b^2 - 6*a^2*b^4 + b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 +
 b^6)/d^4)^(3/4) + sqrt(2)*(d^7*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^
6)/d^4) + 2*(a^3 + a*b^2)*d^5*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6
 + (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt(((9*
a^8*b^2 + 12*a^6*b^4 - 2*a^4*b^6 - 4*a^2*b^8 + b^10)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*cos(d*x
 + c) + sqrt(2)*(2*(9*a^5*b^3 - 6*a^3*b^5 + a*b^7)*d^3*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*cos(d*x +
 c) + (9*a^8*b^3 + 12*a^6*b^5 - 2*a^4*b^7 - 4*a^2*b^9 + b^11)*d*cos(d*x + c))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^
4 + b^6 + (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sq
rt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(1/4) + (9*a^11*b
^2 + 21*a^9*b^4 + 10*a^7*b^6 - 6*a^5*b^8 - 3*a^3*b^10 + a*b^12)*cos(d*x + c) + (9*a^10*b^3 + 21*a^8*b^5 + 10*a
^6*b^7 - 6*a^4*b^9 - 3*a^2*b^11 + b^13)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c)))*((a^6 + 3*a^4*b^2 + 3*a^2*b^
4 + b^6)/d^4)^(3/4))/(9*a^14*b^2 + 39*a^12*b^4 + 61*a^10*b^6 + 35*a^8*b^8 - 5*a^6*b^10 - 11*a^4*b^12 - a^2*b^1
4 + b^16))*cos(d*x + c)^4 + 1260*sqrt(2)*b^3*d^5*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^3 - 3*a*b^2)*d^2
*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 +
 b^6)/d^4)^(3/4)*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4)*arctan(-((3*a^10 + 11*a^8*b^2 + 14*a^6*b^4 + 6*a^4*b^
6 - a^2*b^8 - b^10)*d^4*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4)
+ (3*a^13 + 14*a^11*b^2 + 25*a^9*b^4 + 20*a^7*b^6 + 5*a^5*b^8 - 2*a^3*b^10 - a*b^12)*d^2*sqrt((9*a^4*b^2 - 6*a
^2*b^4 + b^6)/d^4) - sqrt(2)*((3*a^4*b + 2*a^2*b^3 - b^5)*d^7*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*sq
rt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4) + 2*(3*a^7*b + 5*a^5*b^3 + a^3*b^5 - a*b^7)*d^5*sqrt((9*a^4*b^2 - 6*a^2*
b^4 + b^6)/d^4))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b
^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((a^6 + 3*
a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(3/4) - sqrt(2)*(d^7*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*sqrt((9*a^4
*b^2 - 6*a^2*b^4 + b^6)/d^4) + 2*(a^3 + a*b^2)*d^5*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))*sqrt((a^6 + 3*a^4*
b^2 + 3*a^2*b^4 + b^6 + (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^2*
b^4 + b^6))*sqrt(((9*a^8*b^2 + 12*a^6*b^4 - 2*a^4*b^6 - 4*a^2*b^8 + b^10)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^
4 + b^6)/d^4)*cos(d*x + c) - sqrt(2)*(2*(9*a^5*b^3 - 6*a^3*b^5 + a*b^7)*d^3*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4
+ b^6)/d^4)*cos(d*x + c) + (9*a^8*b^3 + 12*a^6*b^5 - 2*a^4*b^7 - 4*a^2*b^9 + b^11)*d*cos(d*x + c))*sqrt((a^6 +
 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 -
 6*a^2*b^4 + b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d
^4)^(1/4) + (9*a^11*b^2 + 21*a^9*b^4 + 10*a^7*b^6 - 6*a^5*b^8 - 3*a^3*b^10 + a*b^12)*cos(d*x + c) + (9*a^10*b^
3 + 21*a^8*b^5 + 10*a^6*b^7 - 6*a^4*b^9 - 3*a^2*b^11 + b^13)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c)))*((a^6 +
 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(3/4))/(9*a^14*b^2 + 39*a^12*b^4 + 61*a^10*b^6 + 35*a^8*b^8 - 5*a^6*b^10 -
11*a^4*b^12 - a^2*b^14 + b^16))*cos(d*x + c)^4 + 315*sqrt(2)*((a^3*b^3 - 3*a*b^5)*d^3*sqrt((a^6 + 3*a^4*b^2 +
3*a^2*b^4 + b^6)/d^4)*cos(d*x + c)^4 - (a^6*b^3 + 3*a^4*b^5 + 3*a^2*b^7 + b^9)*d*cos(d*x + c)^4)*sqrt((a^6 + 3
*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6
*a^2*b^4 + b^6))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(1/4)*log(((9*a^8*b^2 + 12*a^6*b^4 - 2*a^4*b^6 - 4*
a^2*b^8 + b^10)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*cos(d*x + c) + sqrt(2)*(2*(9*a^5*b^3 - 6*a^3
*b^5 + a*b^7)*d^3*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*cos(d*x + c) + (9*a^8*b^3 + 12*a^6*b^5 - 2*a^4
*b^7 - 4*a^2*b^9 + b^11)*d*cos(d*x + c))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^3 - 3*a*b^2)*d^2*sqrt((a
^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/
cos(d*x + c))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(1/4) + (9*a^11*b^2 + 21*a^9*b^4 + 10*a^7*b^6 - 6*a^5*
b^8 - 3*a^3*b^10 + a*b^12)*cos(d*x + c) + (9*a^10*b^3 + 21*a^8*b^5 + 10*a^6*b^7 - 6*a^4*b^9 - 3*a^2*b^11 + b^1
3)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c))) - 315*sqrt(2)*((a^3*b^3 - 3*a*b^5)*d^3*sqrt((a^6 + 3*a^4*b^2 + 3*
a^2*b^4 + b^6)/d^4)*cos(d*x + c)^4 - (a^6*b^3 + 3*a^4*b^5 + 3*a^2*b^7 + b^9)*d*cos(d*x + c)^4)*sqrt((a^6 + 3*a
^4*b^2 + 3*a^2*b^4 + b^6 + (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a
^2*b^4 + b^6))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(1/4)*log(((9*a^8*b^2 + 12*a^6*b^4 - 2*a^4*b^6 - 4*a^
2*b^8 + b^10)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*cos(d*x + c) - sqrt(2)*(2*(9*a^5*b^3 - 6*a^3*b
^5 + a*b^7)*d^3*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*cos(d*x + c) + (9*a^8*b^3 + 12*a^6*b^5 - 2*a^4*b
^7 - 4*a^2*b^9 + b^11)*d*cos(d*x + c))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^3 - 3*a*b^2)*d^2*sqrt((a^6
 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/co
s(d*x + c))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(1/4) + (9*a^11*b^2 + 21*a^9*b^4 + 10*a^7*b^6 - 6*a^5*b^
8 - 3*a^3*b^10 + a*b^12)*cos(d*x + c) + (9*a^10*b^3 + 21*a^8*b^5 + 10*a^6*b^7 - 6*a^4*b^9 - 3*a^2*b^11 + b^13)
*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c))) + 8*(35*a^6*b^4 + 105*a^4*b^6 + 105*a^2*b^8 + 35*b^10 + (8*a^10 - 4
2*a^8*b^2 + 239*a^6*b^4 + 1049*a^4*b^6 + 1173*a^2*b^8 + 413*b^10)*cos(d*x + c)^4 + (3*a^8*b^2 - 124*a^6*b^4 -
390*a^4*b^6 - 396*a^2*b^8 - 133*b^10)*cos(d*x + c)^2 - 2*(2*(a^9*b + 47*a^7*b^3 + 135*a^5*b^5 + 133*a^3*b^7 +
44*a*b^9)*cos(d*x + c)^3 - 25*(a^7*b^3 + 3*a^5*b^5 + 3*a^3*b^7 + a*b^9)*cos(d*x + c))*sin(d*x + c))*sqrt((a*co
s(d*x + c) + b*sin(d*x + c))/cos(d*x + c)))/((a^6*b^3 + 3*a^4*b^5 + 3*a^2*b^7 + b^9)*d*cos(d*x + c)^4)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4*(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.27, size = 906, normalized size = 4.33 \[ \frac {2 \left (a +b \tan \left (d x +c \right )\right )^{\frac {9}{2}}}{9 d \,b^{3}}-\frac {4 a \left (a +b \tan \left (d x +c \right )\right )^{\frac {7}{2}}}{7 d \,b^{3}}+\frac {2 \left (a +b \tan \left (d x +c \right )\right )^{\frac {5}{2}} a^{2}}{5 d \,b^{3}}-\frac {2 \left (a +b \tan \left (d x +c \right )\right )^{\frac {5}{2}}}{5 b d}+\frac {2 b \sqrt {a +b \tan \left (d x +c \right )}}{d}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a}{4 d b}+\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{2}}{4 d b}-\frac {b \ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d}+\frac {2 b \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {b \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \sqrt {a^{2}+b^{2}}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a}{4 d b}-\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{2}}{4 d b}+\frac {b \ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d}-\frac {2 b \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {b \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \sqrt {a^{2}+b^{2}}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^4*(a+b*tan(d*x+c))^(3/2),x)

[Out]

2/9/d/b^3*(a+b*tan(d*x+c))^(9/2)-4/7/d/b^3*a*(a+b*tan(d*x+c))^(7/2)+2/5/d/b^3*(a+b*tan(d*x+c))^(5/2)*a^2-2/5*(
a+b*tan(d*x+c))^(5/2)/b/d+2*b*(a+b*tan(d*x+c))^(1/2)/d-1/4/d/b*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^
2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a+1/4/d/b*ln(b*tan(d*x+
c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2-1
/4/d*b*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1
/2)+2*a)^(1/2)+2/d*b/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1
/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a-1/d*b/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*
(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*(a^2+b^2)^(1/2)+1/4/d/b*ln((a+b*tan(d*x+c))^(1/2)*(
2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a-1
/4/d/b*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1
/2)+2*a)^(1/2)*a^2+1/4/d*b*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1
/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2/d*b/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2
*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a+1/d*b/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+
b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*(a^2+b^2)^(1/2)

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4*(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [B]  time = 41.58, size = 1355, normalized size = 6.48 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^4*(a + b*tan(c + d*x))^(3/2),x)

[Out]

(a + b*tan(c + d*x))^(1/2)*(2*a*(2*a*((4*a^2)/(b^3*d) - (2*(a^2 + b^2))/(b^3*d)) - (8*a^3)/(b^3*d) + (4*a*(a^2
 + b^2))/(b^3*d)) - ((4*a^2)/(b^3*d) - (2*(a^2 + b^2))/(b^3*d))*(a^2 + b^2) + (2*a^4)/(b^3*d)) - atan((b^6*(a
+ b*tan(c + d*x))^(1/2)*((b^3*1i)/(4*d^2) - a^3/(4*d^2) + (3*a*b^2)/(4*d^2) - (a^2*b*3i)/(4*d^2))^(1/2)*32i)/(
(a^2*b^6*32i)/d - (16*a*b^7)/d - (b^8*16i)/d + (32*a^3*b^5)/d + (a^4*b^4*48i)/d + (48*a^5*b^3)/d) - (32*a*b^5*
(a + b*tan(c + d*x))^(1/2)*((b^3*1i)/(4*d^2) - a^3/(4*d^2) + (3*a*b^2)/(4*d^2) - (a^2*b*3i)/(4*d^2))^(1/2))/((
a^2*b^6*32i)/d - (16*a*b^7)/d - (b^8*16i)/d + (32*a^3*b^5)/d + (a^4*b^4*48i)/d + (48*a^5*b^3)/d) - (a^2*b^4*(a
 + b*tan(c + d*x))^(1/2)*((b^3*1i)/(4*d^2) - a^3/(4*d^2) + (3*a*b^2)/(4*d^2) - (a^2*b*3i)/(4*d^2))^(1/2)*96i)/
((a^2*b^6*32i)/d - (16*a*b^7)/d - (b^8*16i)/d + (32*a^3*b^5)/d + (a^4*b^4*48i)/d + (48*a^5*b^3)/d) + (96*a^3*b
^3*(a + b*tan(c + d*x))^(1/2)*((b^3*1i)/(4*d^2) - a^3/(4*d^2) + (3*a*b^2)/(4*d^2) - (a^2*b*3i)/(4*d^2))^(1/2))
/((a^2*b^6*32i)/d - (16*a*b^7)/d - (b^8*16i)/d + (32*a^3*b^5)/d + (a^4*b^4*48i)/d + (48*a^5*b^3)/d))*((3*a*b^2
 - a^2*b*3i - a^3 + b^3*1i)/(4*d^2))^(1/2)*2i - atan((b^6*(a + b*tan(c + d*x))^(1/2)*((3*a*b^2)/(4*d^2) - (b^3
*1i)/(4*d^2) - a^3/(4*d^2) + (a^2*b*3i)/(4*d^2))^(1/2)*32i)/((b^8*16i)/d - (16*a*b^7)/d - (a^2*b^6*32i)/d + (3
2*a^3*b^5)/d - (a^4*b^4*48i)/d + (48*a^5*b^3)/d) + (32*a*b^5*(a + b*tan(c + d*x))^(1/2)*((3*a*b^2)/(4*d^2) - (
b^3*1i)/(4*d^2) - a^3/(4*d^2) + (a^2*b*3i)/(4*d^2))^(1/2))/((b^8*16i)/d - (16*a*b^7)/d - (a^2*b^6*32i)/d + (32
*a^3*b^5)/d - (a^4*b^4*48i)/d + (48*a^5*b^3)/d) - (a^2*b^4*(a + b*tan(c + d*x))^(1/2)*((3*a*b^2)/(4*d^2) - (b^
3*1i)/(4*d^2) - a^3/(4*d^2) + (a^2*b*3i)/(4*d^2))^(1/2)*96i)/((b^8*16i)/d - (16*a*b^7)/d - (a^2*b^6*32i)/d + (
32*a^3*b^5)/d - (a^4*b^4*48i)/d + (48*a^5*b^3)/d) - (96*a^3*b^3*(a + b*tan(c + d*x))^(1/2)*((3*a*b^2)/(4*d^2)
- (b^3*1i)/(4*d^2) - a^3/(4*d^2) + (a^2*b*3i)/(4*d^2))^(1/2))/((b^8*16i)/d - (16*a*b^7)/d - (a^2*b^6*32i)/d +
(32*a^3*b^5)/d - (a^4*b^4*48i)/d + (48*a^5*b^3)/d))*((3*a*b^2 + a^2*b*3i - a^3 - b^3*1i)/(4*d^2))^(1/2)*2i + (
a + b*tan(c + d*x))^(3/2)*((2*a*((4*a^2)/(b^3*d) - (2*(a^2 + b^2))/(b^3*d)))/3 - (8*a^3)/(3*b^3*d) + (4*a*(a^2
 + b^2))/(3*b^3*d)) + ((4*a^2)/(5*b^3*d) - (2*(a^2 + b^2))/(5*b^3*d))*(a + b*tan(c + d*x))^(5/2) + (2*(a + b*t
an(c + d*x))^(9/2))/(9*b^3*d) - (4*a*(a + b*tan(c + d*x))^(7/2))/(7*b^3*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}} \tan ^{4}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**4*(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral((a + b*tan(c + d*x))**(3/2)*tan(c + d*x)**4, x)

________________________________________________________________________________________